
Modulus Evaluation of Particulate Composites Using 
Generalized Viscosity Model for Solutions with 
Suspended Particles 

RICHARD D. SUDDUTH” 

71 3 Mountain Gap Road, Huntsville, AL 35803 

SYNOPSIS 

The theoretical relationship between the shear modulus of a particulate reinforced composite 
and the viscosity of a solution with suspended particles was first proposed by Goodier. 
Since that time several partially successful attempts have been made in the literature to 
derive equations to describe the available relative shear modulus-particulate concentration 
data. Recently a new generalized suspension viscosity equation appeared in the literature 
which for the first time addresses the detailed effects of particle size, particle size distribution, 
and packing fraction. This new viscosity equation was applied to available modulus literature 
on particulate composites in this study. Four significant particulate composite modulus 
derivations in the literature were all shown in this study to yield the same theoretical 
“intrinsic modulus” of a particulate composite. The generalized viscosity-modulus equation 
yielded an excellent fit of the shear modulus-particulate concentration data of both Small- 
wood and Nielsen using a variable intrinsic modulus. Some fillers predicted the Einstein 
limiting value of the intrinsic modulus while other fillers yielded intrinsic modulus values 
that were either larger or smaller than this value. The intrinsic modulus for carbon black 
in rubber was much larger than Einstein’s predicted value. However, intrinsic modulus 
values smaller than Einstein’s prediction were obtained at  temperatures below the glass 
transition temperature of the matrix. Unfortunately, the previously obtained direct rela- 
tionship between the particle interaction coefficient and particulate size for suspension 
viscosities with a constant intrinsic viscosity was not obtained for shear modulus-particulate 
concentration data using a variable intrinsic modulus. 0 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

The theoretical relationship between the shear 
modulus of a particulate reinforced composite and 
the viscosity of a solution with suspended particles 
was first proposed by Goodier.’ Smallwood’ and 
Guth3 extended these initial theoretical considera- 
tions to justify the relative equality G, = qr with G, 
= Gc/Gn and qr = qc/q,,,  where G is the shear mod- 
ulus, q is viscosity, and r indicates the relative value, 
c the composite or suspension, and 0 the matrix of 
the suspending fluid at zero (0% ) volume percent 

* Currently at the Mississippi Polymer Institute, University 
of Southern Mississippi, Hattiesburg, MS 39406-0003. 

0 1994 John Wiley & Sons, Inc. 
Journal of Applied Polymer Science, Vol. 54, 1243-1262 (1994) 
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particles. The theoretical considerations of Goodier, 
Smallwood,’ and Guth3 each addressed the rein- 
forcement of a rubberlike material in which stresses 
about a filler particle were analyzed to deduce the 
effect of filler concentration on the modulus. Because 
of the great similarity between the field equations 
of the theory of elasticity and those of hydrody- 
namics, this approach was substantially the same 
as that employed by to derive the increase 
in viscosity caused by spherical particles in a liquid 
suspension. 

Several significant attempts have been made in the 
literature to derive equations to describe the relative 
shear modulus of particulate-filled  system^.^*^,^^" 
These equations were derived using the measurable 
physical properties of the composite such as the 
modulus of the filler, modulus of the matrix, and 
Poisson’s ratio of the matrix. Unfortunately, these 

1243 
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equations have had only limited success in fitting 
the available modulus-particulate concentration 
data. Schwarzl et al." point out that a major limi- 
tation of these mechanical property modulus deri- 
vations is that they do not include effects for particle 
size, particle size distribution, or a maximum pack- 
ing fraction. In addition, no adjustable parameters 
have been included in these mechanical property 
modulus derivations to account for process varia- 
tions. 

In several instances  investigator^^,^^-'^ have found 
that available suspension viscosity equations were 
effective in describing shear modulus of particulate- 
reinforced composites as a function of concentration. 
The concept of a maximum packing fraction intro- 
duced in the viscosity equations was found to be 
useful in describing the modulus of particulate com- 
posites as a function of concentration. Schwarzl et 
al.15 had some partial success in describing the effects 
of particle size distribution in particulate composites 
using an imperical modification of the Eilers-van 
Dijk" equation developed for suspension viscosities. 
Schwarz1l5 generated two forms of the Eilers-van 

Dijk equation and then combined these two equa- 
tions to generate an effect indicative of particle size 
distribution. 

Several a t t e m p t ~ ~ ~ J ~ J ~ - ~ '  have been made to 
modify the original mechanical property modulus 
derivations to introduce both a maximum packing 
fraction and one or more adjustable parameters to 
better fit the data. Some success has been achieved 
by empirically modifying these equations to account 
for the maximum packing fraction. However, the 
effects of particle size and particle size distribution 
have remained elusive of adequate description. 

Recent arti~les*l-*~ indicate that the interest in 
the mechanical properties of particulate-filled com- 
posites remains high. 

A series of  article^*^-^^ that describe the derivation 
of a new generalized equation that addresses the 
viscosity of suspensions has recently appeared in 
the literature. This new generalized equation for the 
first time addresses the detailed effects of particle 
size, particles size distribution, and packing fraction. 
This suspension viscosity equation has not yet been 
applied to the evaluation of particulate composites. 

15(1-v0) 

( 8  - lev,) 
[GI = 
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Figure 1 Calculated intrinsic modulus vs. Poisson's ratio for modulus ratios % 1. 
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The objective of this work was to apply this new 
equation to available literature on particulate com- 
posites to evaluate how adequately it predicts the 
modulus data. Available equations derived to de- 
scribe the modulus of particulate composites will be 
shown to be very useful in predicting the “intrinsic 
modulus” of a particulate composite. 

DESCRIPTION OF A NEW GENERALIZED 
SUSPENSION VISCOSITY EQUATION 

In an earlier study2* this author showed that the 
primary equations identified by R u t g e r ~ ~ ~ , ~ ~  could 
be reduced to the following generalized equation to 
describe the viscosity-concentration relationships 
of suspensions: 

For the case where cr = 1, the resulting equation can 
be written as 

(2) 
9 (Pn - (P 

90 (Pn 
l n - =  -[7]pnln-. 

or 

where 

(3 )  

9 = suspension viscosity 
to = viscosity of suspending medium 

u = particle interaction coefficient 
(P = suspension particle volume concentration 

[9] = intrinsic viscosity 

pn = particle packing fraction 

The particle packing fraction (P,, can be evaluated 

0 . 0  0.1 0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  0 .7  0 . 8  0 .9  1.0 

Poisson‘s Ratio 

Figure 2 Calculated intrinsic modulus vs. Poisson’s ratio for modulus ratios 4 1. 
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from the particle size distribution25 from the follow- 
ing equations: 

( 4 )  

( 5 )  

pn = +n,ult - (pn,ult - pm)em[l-(Ds'D1)l 

Pn,ult = 1 - (1 - V m ) "  

where 

(7 )  

D, = Xth average particle diameter (i.e., x 

n = number of different particle diameters in 

Ni = number of particles of ith particle diameter 
Bi = diameter of ith particle size 

= 5 , l )  

batch combination 

a = const = 0.268 

pn = packing fraction 
pn,ult = ultimate packing fraction for specific num- 

ber of particle sizes 
pm = monodisperse packing fraction 

If an adequate description of the particle size dis- 
tribution is available, the D5 and D1 particle size 
averages described by Eqs. (6)  and (7 )  can be re- 
placed with more convenient equations for the eval- 
uation of particle blends that have been developed 

In the original derivation of the generalized vis- 
cosity equation24 it was found that the particle in- 
teraction coefficient u can be described in general 
as 

where 

u = particle interaction coefficient 
QS = solvent contribution to particle interaction 

coefficient 
up = summation of all individual particle contri- 

butions to particle interaction coefficient 

Modulus Ratio 

Figure 3 Calculated intrinsic modulus vs. modulus ratio and Poisson's ratio. 
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Further development of this analysis 24 showed that 
the summation of all of the individual particle con- 
tributions to the particle interaction coefficient u p  
should be inversely related to the number average 
particle size such that: 

where upc is the particle contribution constant as- 
sumed to be identical for all particles in a suspension. 
This analysis was confirmed in a later study26 when 
the blends of suspensions were evaluated. For these 
suspension blends it was found that the particle in- 
teraction coefficient can be very adequately de- 
scribed as a linear function of the inverse of the 
number average particle size D1. 

Note that the number average particle size di- 
ameter D1 generally gives greater weightage to 
smaller particles than to larger particles. This means 
that the particle interaction coefficient would be ex- 
pected to increase as the number of smaller particles 
in the suspension mixture increases. 

As previously described, 24 this generalized sus- 

pension viscosity equation predicts the form of many 
suspension equa;tions that have previously appeared 
in the literature. For example, by varying the particle 
interaction coefficient u, the Arrhenius equation 30731 

results when u = 0, the Kreiger-Dougherty 
equation3' results when u = 1, and when u = 2 the 
Mooney equation33 results. Fractional values for the 
particle interaction coefficient were also found24 to 
be useful and perfectly acceptable when optimizing 
the empirical fit of the literature data of Vand34 and 
Eiler.35 

Further insight into the characteristics of the in- 
teraction parameter u and the packing fraction gcn 
can be obtained from the series expansion of the 
generalized suspension equation. Using a MacLaurin 
series expansion for Eq. ( 1)  gives 

-2.5 
0 .0  0 .1  0.2 0 . 3  0.4 0 .5  0 . 6  0 . 7  0.8 0.9 1.0 

Modulus Ratio 

Calculated intrinsic modulus vs. modulus ratio and Poisson's ratio. Figure 4 
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It is apparent that the first two terms are the 
limiting terms for all possible values for 

the particle interaction coefficient u and the packing 
fraction (cn when [q] = 2.5. It has also been found 
that u and (cn always occur as a paired ratio for sec- 
ond-order and higher expansion terms. Since these 
two parameters are paired in second-order and 
higher terms, if u = 0.0, then the packing fraction 
does not enter into the viscosity calculation. This 
suggests that when the particle interaction coeffi- 
cient is zero, particle packing is not important and 
particles have minimum interference with each 
other. 

However, when u increases, it is easy to see that 
the viscosity q will increase. Likewise, if the packing 
fraction (c, increases, then the viscosity will decrease 
for the same particle interaction coefficient u. 

GENERATION OF EINSTEIN'S INTRINSIC 
VISCOSITY 

The evaluation of the intrinsic viscosity [ q ]  of a 
general viscosity equation function F (  (c) describing 

the viscosity of a suspension is in general evaluated 
from the second term of a MacLaurin series expan- 
sion for a viscosity function as 

( c 4 +  ... (11) 9 3  + - F"" ( 0 ) F" ' (0)  +- 
3! 4! 

This approach can be illustrated using the fol- 
lowing equation developed by Einstein 4,5 : 

simplified this formulation using a 
MacLaurin series to give the more familiar equation 

It is apparent that only the first two terms of this 

0 . 0  0.1 0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  0 . 7  0 . 8  0.9 1.0 

Volume Fraction 

Figure 5 
equation predicted curves. 

Smallwood's relative modulus vs. volume fraction data and generalized modulus 
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series are normally reported as Einstein's familiar 
equation. 

The first derivative used to generate the intrinsic 
viscosity of Einstein's equation (12)  is 

It is interesting to compare this first derivative with 
the first derivative of the generalized viscosity equa- 
tion ( l ) , which gives 

The similarity of these equations becomes apparent 
if 

Theoretical discussions describing some justification 
for these relationships has been presented else- 

where.24 It has also been shown that the generalized 
suspension viscosity equation is a p p l i ~ a b l e ~ ~ - ~ ~  to fit 
most of the viscosity-vs.-concentration data in the 
literature. However, it is not yet clear what changes 
or additional assumptions would be required to make 
the generalized viscosity equation applicable to a 
modification of Einstein's original viscosity equation 
derivation. 

GENERATION OF AN INTRINSIC 
MODULUS FOR PARTICULATE 
COMPOSITE MATERIALS 

Goodier,' Smallwood,2 and Guth3 justified the 
theoretical relationship between the shear modulus 
of a particulate reinforced composite, G, = G,/Go, 
and the viscosity of a solution with suspended par- 
ticles, 9, = q c / q o .  This leads to the relative equality 
G, = q,, where G is the shear modulus, q is viscosity, 
and r indicates relative value, c the composite or 
suspension, and 0 the matrix or the suspending fluid 

A- . 
10'' -100 -80 -63 - 4 0  -20 0 io i o  6 80 I& I20 uo 160 

TEMPERATURE ('C) 

Figure 6 (- ) Shear modulus, (- -) loss modulus, and ( - - - - )  damping vs. tem- 
perature for (+) unfilled epoxy and (0) epoxy with 0.41 volume fraction spheres of diameter 
10-20 wm. (Reproduced from Ref. 17 with permission.) 
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at zero (0% ) volume percent particles. Because of 
the great similarity between the field equations of 
the theory of elasticity and those of hydrodynamics, 
this approach was substantially the same as that 
employed by E i n ~ t e i n ~ ’ ~  in deriving the increase in 
viscosity caused by spherical particles in a liquid 
suspension. 

Since the evaluation of the intrinsic viscosity for 
suspensions required the evaluation of the first de- 
rivative of the viscosity function, it is expected that 
the evaluation of the “intrinsic modulus” for par- 
ticulate composites would require the evaluation of 
the first derivative of the shear modulus function. 
Again the relative equality of the intrinsic viscosity 
[ q ]  and the “intrinsic modulus” [GI would be ex- 
pected as 

[ol = [GI 

Several significant attempts have been made in 
the literature to derive equations to describe the rel- 
ative modulus of particulate-filled  system^.^*^*^'^ 
These equations were derived using the measurable 
physical properties of the composite such as the 
modulus of the filler, modulus of the matrix, and 
Poisson’s ratio of the matrix. 

One of the more significant particulate composite 
modulus equations was developed separately by both 
Kerner7 and Hashin and Shtrikman,’ Lewis and 
Nielsen l7 showed that Kerner’s equation can be 
conveniently written as 

1 + ABp 
G, = Go 

1 - B p  

such that 

and 

where 

Gf = shear modulus of filler 
Go = shear modulus of matrix material 
vo = Poisson’s ratio of matrix 
p = volume fraction of filler in matrix 

Table I. Lewis and Nielsen Data for Relative Modulus at T - T,. 

Volume 
Diameter, Fraction, 

Relative Modulus at  T - TB 

Pm 9 -100°C -80°C -60°C -40°C -20°C +20”C +400c 

10-20 0.00 
0.10 
0.19 
0.30 
0.41 

30-40 0.00 
0.10 
0.23 
0.30 
0.40 

75-90 0.00 
0.02 
0.05 
0.10 
0.15 
0.19 
0.24 
0.31 
0.32 
0.38 

1.00 
1.20 
1.52 
1.93 
2.63 
1.00 
1.18 
1.56 
1.89 
2.41 
1.00 
1.03 
1.10 
1.23 
1.27 
1.49 
1.66 
1.94 
1.94 
2.32 

1.00 
1.19 
1.51 
1.97 
2.75 
1.00 
1.19 
1.57 
1.97 
2.50 
1.00 
1.03 
1.12 
1.21 
1.29 
1.49 
1.66 
1.91 
1.95 
2.34 

1.00 
1.22 
1.51 
2.00 
2.84 
1.00 
1.20 
1.58 
2.04 
2.60 
1.00 
1.02 
1.10 
1.20 
1.29 
1.46 
1.64 
1.91 
1.96 
2.38 

1.00 
1.22 
1.51 
2.06 
2.97 
1.00 
1.22 
1.61 
2.08 
2.64 
1.00 
1 .oo 
1.10 
1.17 
1.29 
1.46 
1.64 
1.91 
1.98 
2.44 

1.00 1.00 1.00 
1.28 1.28 1.28 
1.57 1.96 1.90 
2.04 2.72 2.63 
3.03 4.90 4.74 
1.00 
1.23 
1.62 
1.96 
2.49 
1.00 
1.00 
1.10 
1.19 
1.30 
1.49 
1.66 
1.91 
1.96 
2.41 

Reproduced from Ref. 17 with permission. 
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Note the similarity between this equation and the 
Einstein equation (12). The first derivative of the 
Kerner equation (17) is then 

Again note the similarity between this first deriva- 
tive with that of the Einstein equation (14) and that 
of the generalized suspension equation ( 15 ) . The 
intrinsic modulus would then be defined as 

[GI = B ( 1 +  A )  (21) 

Substituting gives 

Another approach addressing the theoretical pre- 
diction of the modulus of a composite particulate 

5 

4 

- 2 3  
3 z 
9 

d 
- 
c) m 
- 2  

1 

0 

composite was initially developed by van der Poel' 
and modified by Smith." Smith's modified van der 
Poel equation was described as 

 AX^ + BX + c = o (22)  

where 

and the quantities P ,  Q ,  and S are defined as 

Here M is the ratio Gf/Go and the quantity X = Gc/  

'p =.773 
u = 1.232 

[GI = 2.182 

U= ,621 I 

[GI = 2.488 t I/ / 

Measurements at T-Tg = 20.C 
Measurements at T-Tg = -20-C 

A Measurements at T-Tg I -60.C 
A Measurements at T-Tg = -100.C 

0 . 0  0 .1  0.2 0 . 3  0 . 4  0 . 5  0 .6  0.7 0 . 8  0 .9  1.0 

Volume Fraction 

Figure 7 Lewis and Nielsen relative modulus vs. volume fraction data for 10-20-pm 
particles and generalized modulus equation predicted values using a variable intrinsic 
modulus. 
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Go - 1; G is the shear modulus; v is Poisson's ratio; 
and a3 = p, the volume fraction of the dispersed 
phase. Subscript c denotes a property of the com- 
posite; 0 of the matrix, and f of the dispersed phase. 

When the volume fraction p = a3 of the filler 
spheres is small, terms of higher order than a3 can 
be neglected. Smith" showed that with this as- 
sumption equation (22) reduces to 

-- Gc - 1 + Fp 
GO 

where 

It is apparent that Eq. (23) is really the first two 
terms of the MacLauren series for Eq. (22). The 
term F is effectively the intrinsic modulus [GI. Note 
that the intrinsic modulus from the Smith-van der 

5 

4 

3 3  

g 

2 2  

l 
c - 

1 

0 

Poel equation is the same as that obtained for the 
Kerner equation. 

A third approach to the modulus prediction of a 
particulate composite was generated by Budiansky, 
who generated an equation that Smith lo showed 
could be written in the form 

G, - Go 
Gf - Go 

(8 - 10vc)G, + (7  - 51,)G, 
(8 - l o ~ , )  Gf + ( 7  - ~ v , ) G ,  cp (24)  - -- 

This equation again results in a quadratic equation 
for the shear modulus of the particulate composite, 
G,. It can be shown that the first derivative of this 
equation can be described as 

1 ~~ 

[GI = 2.5 
cpn = ,773 

(J= 1.22 

u =  .054 

[GI = 2.5 
cp =.773 
a = .233 

Measurements at T-Tg = 20.C 

I3 Measurements at T-Tg = -2OT 
A Measurements at T-Tg = -60.C 

Measurements at T-Tg = -1OO'C 

0 . 0  0.2  0 . 4  0 . 6  0 . 8  1 .o 

Volume Fraction 

Figure 8 Lewis and Nielsen relative modulus vs. volume fraction data for 10-20-pm 
particles and generalized modulus equation predicted values using a constant intrinsic 
modulus. 
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This derivative can be evaluated by noting that when 
(o = 0, then 

Making these substitutions, the derivative dG,/dq 
for Budiansky’s’ equation at (o = 0 gives 

It is apparent that this yields the same intrinsic 
modulus [GI previously obtained [Eq. (21a)l for 
both the Kerner and the van der Poel-Smith equa- 
tions: 

Hence all four of the significant derivations dealing 
with the prediction of a shear modulus of a partic- 
ulate composite yield the same formulation for the 
intrinsic modulus. 

ELUCIDATION OF LIMITS OF INTRINSIC 
MODULUS 

When the modulus of the filler material, Gf, is sig- 
nificantly greater than the modulus of the matrix, 
Go, such that Gf 9 Go, the intrinsic modulus defined 
by Eq. (21a) reduces to 

15(1 - Y O )  

= 8 - 10vo 

In general, it can be shown36 that the volume change 
of a homogeneous material is related to Poisson’s 
ratio as 

AV - (1 - 2 ~ 0 )  
V E 3 a m  -- 

where 

AV = change in volume 
V = original volume 
E = Young’s modulus 

2 . 4  

2 . 2  

2 . 0  

1 .8 

1 . 4  I 1 I I 1 I .  I 

-100 -80 - 6 0  - 4 0  - 2 0  0 2 0  4 0  

Temperature (T - Tg) , “C 
Calculated intrinsic modulus values at T - TB for Lewis and Nielsen data. Figure 9 
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g,,, = uniform three-dimensional stress 
vo = Poisson’s ratio 

It is apparent from Eq. (28) that a material will 
have a negligible volume change and be incompres- 
sible if the Poisson ratio is approximately 0.5. If the 
assumption is made that a particulate composite is 
incompressible such that Poisson’s ratio uo = 0.5, 
then the intrinsic modulus defined by Eq. (27) re- 
duces to 

[GI = 2.5 (29) 

This is also the familiar result obtained by Einstein 
as the intrinsic viscosity [ q ]  of a liquid suspension. 
The assumptions required to reduce the intrinsic 
modulus to [GI = 2.5 were also the same ones spec- 
ified by Einstein. The upper limit of the intrinsic 
modulus [GI as described by Eq. (27) is shown in 
Figure 1 for values of Poisson’s ratio vo ranging from 
0 to 0.7. As indicated in this figure, the upper limit 
of the intrinsic modulus ranges only from 1.88 to 3 

when Poisson’s ratio ranges from 0 to 0.6. Above a 
Poisson’s ratio of 0.6 the intrinsic modulus increases 
more rapidly. 

The second limit of the generalized intrinsic 
modulus occurs when the modulus of the filler Gf is 
essentially zero such that Gf 4 Go. This condition 
would apply, for example, if the particles were voids 
with essentially no mass or strength. For this case 
the intrinsic modulus reduces to 

The lower limit of the intrinsic modulus [GI as de- 
scribed by Eq. (30) is shown in Figure 2 for values 
of Poisson’s ratio uo ranging from 0 to 0.7. It is in- 
teresting that the lower limit of the intrinsic modulus 
is negative when Poisson’s ratio ranges from 0 I uo 
< 1. 

The limits defined by Eq. (27) and (30) represent 
the extremes of the intrinsic modulus. Between these 
extremes there is one range of values where the in- 

“ I  . , - , .  I . , .  , ‘ I . ,  

-100 - 6 0  - 6 0  - 4 0  - 2 0  0 2 0  4 0  

Temperature (T - Tg), OC 

Figure 10 
temperature ( T - T,) for 10-20-wm particles using Lewis and Nielsen data. 

Calculated average percent error in fitting generalized modulus equation vs. 
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trinsic modulus is positive and a second range where 
the intrinsic modulus is negative. In general these 
ranges for the intrinsic modulus are 

(31) Gf 
Go - [GI 2 0 when 1 I - < co 

and 

(32) Gf 
Go - [GI 2 0 when 0 I - < 1 

The effect of Poisson’s ratio u0 on the intrinsic 
modulus [GI when the modulus ratio ranges from 1 
I Gf/Go I 50 is shown in Figure 3. This figure in- 
dicates that the upper limit of the intrinsic modulus 
is nearly reached for most values of Poisson’s ratio 
at relatively low values of the filler to the matrix 
modulus ratio Gf/Go. 

Figure 4 shows the effect of Poisson’s ratio vo on 
the intrinsic modulus [GI when the modulus ratio 
ranges from 0 I Gf/Go I 1. For modulus ratios rang- 

ing from 0.5 to 1.0 the lower limit of the intrinsic 
modulus is nearly independent of Poisson’s ratio. 

APPLICATION OF GENERALIZED 
VISCOSITY EQUATION TO 
SMALLWOOD’S PARTICULATE 
COMPOSITE MODULUS VS. VOLUME 
FRACTION DATA 

Smallwood* evaluated Young’s modulus of com- 
pounded natural rubber using several fillers in a 
rubber matrix. Young’s modulus E ,  the shear mod- 
ulus G ,  and Poisson’s ratio vQ, are related through 
the following f ~ r m u l a t i o n ~ ~ :  

(33)  

Since the shear modulus and Young’s modulus are 
directly related, Smallwood evaluated Young’s 
modulus in place of the shear modulus in his rubber 

I - Constant Intrinsic Modulus 
I 

4 -  

3 -  

-100 - 8 0  - 6 0  - 4 0  - 2 0  0 

Temperature (T - Tg), “C 

Figure 11 
temperature ( T - T,) for 30-40-pm particles using Lewis and Nielsen data. 

Calculated average percent error in fitting generalized modulus equation vs. 
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formulations. The modulus results for two filler ma- 
terials measured by Smallwood are shown in Figure 
5 at  several concentration levels. The theoretical 
curves included in this figure for each filler series 
were generated using the generalized viscosity equa- 
tion ( 1 ) modified for shear modulus as 

For the case where u = 1, the resulting equation can 
be written as 

GC (Pn - CP 
GO (Pn 

ln-= [G]cpnln- 

or 

cpn - cp -IClv, 
Gc = Go( 7) (37) 

where 

Gc = composite shear modulus 
Gf = shear modulus of filler 
Go = shear modulus of matrix 

[GI = intrinsic modulus 
YO = Poisson's ratio 
u = particle interaction coefficient 
cp = particle volume concentration in matrix 
(on = particle packing fraction 

The other equations [ (4 )  - ( 10) 3 associated with the 
generalized viscosity equation should apply equally 
well to the shear modulus modified version. 

In the absence of particle size distribution data 
the packing fraction for the two filler materials in 
Figure 5 were assumed to be approximately cpn 
= 0.65. A packing fraction of 0.64 was found by Lee38 
to be the average of several reported literature values 
for dense random packing of spherical particles. 
With this assumption it was found that an intrinsic 
modulus of [GI = 2.5 successfully predicted the ex- 
perimental results for the Gilders whiting filler ma- 
terial. However, it was found that an intrinsic mod- 

--(t Constant Intrinsic Modulus 

--t- Variable Intrinsic Modulus 

1 t2LLIL 
-100 -80 - 6 0  - 4 0  -20 0 

Temperature (T-Tg), O C  

Figure 12 
temperature (T - T,) for 75-90-pm particles using Lewis and Nielsen data. 

Calculated average percent error in fitting generalized modulus equation vs. 
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ulus of [GI = 4.27 was required to minimize the 
error in the prediction of the Smallwood carbon 
black data. Based on the assumptions used in this 
evaluation the particle interaction coefficients were 
nearly the same for both filler materials. The min- 
imum error in fitting the carbon black data was ob- 
tained when the particle interaction coefficient was 
u = 0.655. For the Gilders whiting data the optimized 
particle interaction coefficient was c = 0.672. 

In general, the generalized viscosity /modulus 
equation was shown to fit Smallwood's data very 
well for these two filler materials. However, it is not 
yet clear why the intrinsic modulus calculated to fit 
the data for the carbon black filler material was so 
much larger than Einstein's predicted value, which 
worked well for the Gilders whiting filler. This is 
particularly true since the intrinsic modulus is theo- 
retically predictable solely from the properties of 
the matrix material and both filler materials had 
the same rubber matrix. 

It is possible that the intrinsic modulus developed 
from Budiansky's modulus derivation for a partic- 
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ulate composite, as indicated in Eq. (25), may be 
more appropriate for some materials. For these cases 
the intrinsic modulus may not be able to be esti- 
mated from the pure matrix properties. However, it 
is not yet clear how to estimate the influence of 
composite properties on the intrinsic modulus for 
these materials. At this time, the influence of com- 
posite properties on the intrinsic modulus can best 
be estimated from experimental evaluations of the 
intrinsic modulus. 

The first two terms of the MacLauren series for 
Eq. (34)  reduce to the straight-line equation shown 
in Figure 5 when G, >> Go and the Poisson ratio uo 
= 0.5. Smallwood2 was the first to show that this 
equation, which was originally derived by Einstein 
for the viscosity of a liquid suspension, could also 
be derived for the modulus of a particulate compos- 
ite. However, it is apparent that this equation was 
only applicable at very low concentration levels for 
the Gilders whiting filler whereas the generalized 
modulus equation successfully predicts the whole 
concentration curve for both fillers. 

[GI = 2.166 
rp =.65 
(I= ,126 

[GI = 2.182 
rp" = .773 
a = ,621 

P 
u= ,888 A 10-20 p Particles 

H 30-40 p Particles 

0 75-90 p Particles 

0 . 0  0.2 0 .4  0 . 6  0 . 8  1 . o  

Volume Fraction 

Figure 13 Lewis and Nielsen relative modulus vs. volume fraction data for T - Tg 
= -20°C and generalized modulus equation predicted values using a variable intrinsic 
modulus. 
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APPLICATION OF GENERALIZED 
VISCOSITY EQUATION TO LEWIS AND 
NIELSEN'S PARTICULATE COMPOSITE 
MODULUS VS. VOLUME FRACTION DATA 

Lewis and Nielsen17 measured the shear modulus 
for composites with glass spheres dispersed in an 
epoxy matrix as a function of temperature for several 
values of volume fraction and particle size filler. 
Representative data from the study by Lewis and 
NielsenI7 are shown in Figure 6 for shear modulus 
G', logarithmic decrement or damping A, and cal- 
culated loss modulus G" versus temperature for 
samples of pure matrix and a high volume fraction 
of spheres. For this study Lewis and Nielsen defined 
the glass transition temperature Tg as the maximum 
in the dampening curve between the glass and rub- 
bery regions. 

Selected data from Lewis and Nielsen l7 have been 
summarized in Table I to illustrate the effectiveness 
of the generalized viscosity/modulus equation eval- 
uated in this study. Lewis and Nielsen's data in Ta- 
ble I include three different particle size ranges for 

measurements within 100°C of Tg. Unfortunately, 
the particle size distribution of these particle ranges 
was not available. 

Using the generalized viscosity /modulus equa- 
tion, it was possible to generate a reasonable packing 
fraction of pn = 0.773 for particles ranging from 10 
to 20 pm from an optimization of data a t  T - Tg 
= +20"C. This packing fraction was then assumed 
to be appropriate for all the other temperatures for 
this particle size range. 

A reasonable estimate of the maximum packing 
fraction was not obtainable from an optimization of 
the data for the other two particle size ranges. For 
these cases the maximum packing fraction was as- 
sumed to be approximately p,, = 0.65, as was done 
for Smallwood's data. 

The generalized viscosity equation modified for 
shear modulus as described by Eqs.( 34) - (37)  was 
used to characterize the shear modulus data in Table 
I. These data were analyzed using both a variable 
intrinsic modulus and a constant intrinsic modulus. 
A comparison of Figures 7 and 8 indicates that a 
variable intrinsic modulus allows a better fit of the 

/ 
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30-40 p Particles 
0 75-90 p Particles 

0 :  I I I 
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Figure 14 
= -20°C and generalized modulus equation predicted values using a constant intrinsic 
modulus. 

Lewis and Nielsen relative modulus vs. volume fraction data for T - TB 
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10-20 pm particle size data in Table I. The intrinsic 
moduli that gave the best fit of the data are shown 
in Figure 9. Note in this figure that the intrinsic 
moduli for both the 10-20- and 30-40-pm particle 
ranges approach 2.5 at near or above the Tg but de- 
creases significantly below Tg. 

It can easily be shown that the observed results 
in Figure 9 are consistent with the predicted results 
for the intrinsic modulus as indicated by Eq. (35) 
and Figure 3. As the glass transition is approached 
with a lowering of temperature, the modulus of the 
epoxy matrix will increase and tend to approach the 
modulus of the glass sphere filler material, resulting 
in a decrease in the filler-to-matrix modulus ratio. 
As indicated by Eq. (35) and Figure 3, a decrease 
in the modulus ratio will cause the intrinsic modulus 
to decrease if Poisson’s ratio is held nearly constant. 

As indicated in Figures 10-12, the percent error 
in the fit of the data significantly decreases when 
the intrinsic modulus is allowed to vary. Since the 
intrinsic modulus is approximately 2.5 at T - Tg 
= 20°C and above for the 10-20-pm particle range, 

intrinsic modulus was negligible in this temperature 
range. However, below Tg a variable intrinsic mod- 
ulus allows a significant decrease in the error in fit- 
ting the data. 

It is not yet clear in Figure 9 why the intrinsic 
modulus increased with a decrease in temperature 
below T = -40°C for the particle size range 75-90 
pm and below -60°C for the 10-20-pm particle size 
range. It also appears that there could be an unex- 
plainable minimum in the intrinsic modulus for each 
particle size range in Figure 9. It is interesting, how- 
ever, that this minimum, if real, does appear to cor- 
relate with particle size. The location of this mini- 
mum could also be related to particle size distribu- 
tion in some way not yet understood. Additional data 
are needed to answer these questions. 

As illustrated in Figures 13 and 14, a significant 
improvement in the fit of the data occurred when 
the intrinsic modulus was allowed to be a variable. 
Unfortunately, there was not an obvious trend of 
the particle interaction coefficient with particle size 
for these data with a variable intrinsic modulus, as 

the difference between the variable and the constant indicated in Figure 15. 
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Figure 15 
modulus for Lewis and Nielsen data. 

Calculated particle interaction coefficients at T - Tg using a variable intrinsic 
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However, when the intrinsic modulus remained 
a constant at [GI = 2.5 there was a definite trend 
in the particle interaction coefficient as a function 
of particle size, as indicated in Figure 16. As indi- 
cated in Figure 17, the particle interaction coefficient 
was nearly linear with the mean particle size for 
these three particle ranges at a constant intrinsic 
modulus. However, with no information on the par- 
ticle size distribution the number average of the 
particle size ranges could not be determined. This 
latter result was consistent with that found in an 
earlier evaluation26 for the relationship of the par- 
ticle interaction coefficient with latex particle size 
for the viscosity of suspension blends. Of course, for 
liquid suspensions the intrinsic viscosity was ex- 
pected to be a constant at [ 113 = 2.5. 

It is not clear from the Lewis and Nielsen data 
how to best represent the effect of particle size in 
particulate composites. It is hoped, however, that 
this problem can be remedied with more detailed 
information on the particle size distribution in future 
solid particulate composite studies. 

CONCLUDING REMARKS 

Several significant attempts have been made in the 
literature to derive equations to describe the relative 
shear modulus of particulate-filled  system^.^^^^^-'^ 
Unfortunately, these equations have had only lim- 
ited success in fitting the available modulus-partic- 
ulate concentration data. 

A series of articles2P27 that describe the derivation 
of a new generalized equation that addresses the 
viscosity of suspensions has recently appeared in 
the literature. This new generalized equation, which 
for the first time addresses the detailed effects of 
particle size, particles size distribution, and packing 
fraction, was applied to the available literature on 
particulate composites. Since the evaluation of the 
intrinsic viscosity for suspensions required the eval- 
uation of the first derivative of the viscosity function, 
the evaluation of the intrinsic modulus for partic- 
ulate composites required the evaluation of the first 
derivative of the shear modulus function. The rel- 
ative equality of the intrinsic viscosity [ 71 and the 
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Figure 16 
modulus for Lewis and Nielsen data. 

Calculated particle interaction coefficients at T - Tg using a constant intrinsic 
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Figure 17 
vs. reciprocal average particle diameter for Lewis and Nielsen data. 

Calculated particle interaction coefficients using a constant intrinsic modulus 

intrinsic modulus [GI was assumed from the anal- 
ysis. Available equations derived by Kerner, Hashin 
and Shtrikman,' van der Poel' and Smith," and 
Budianskyg to describe the modulus of particulate 
composites were shown to all yield the same intrinsic 
modulus of a particulate composite. 

In general the intrinsic modulus was shown to be 
positive when the filler to the matrix modulus ratio 
Gf/Go was 1 I Gf/Go I co and the intrinsic modulus 
was shown to be negative when 0 I Gf/Go I 1. If 
the filler to the matrix modulus ratio is large and 
the particulate composite is incompressible such that 
Poisson's ratio vo = 0.5, then the intrinsic modulus 
reduces to Einstein's value of [ G J = 2.5. 

In general, the generalized viscosity/modulus 
equation was shown to fit Smallwood's data very 
well for the two filler materials evaluated. However, 
it is not yet clear why the intrinsic modulus calcu- 
lated to fit the data for the carbon black filler ma- 
terial was so much larger than Einstein's predicted 
value, which worked well for the Gilders whiting 
filler. This is particularly true since the intrinsic 
modulus is theoretically predictable solely from the 

properties of the matrix material and both filler ma- 
terials had the same rubber matrix. It is possible 
that the intrinsic modulus developed from Budi- 
ansky's modulus derivation for a particulate com- 
posite may be more appropriate for some materials. 
At  this time, the influence of composite properties 
on the intrinsic modulus can best be estimated from 
experimental evaluations of the intrinsic modulus. 

The generalized viscosity /modulus equation was 
used to characterize the Lewis and Nielsen shear 
modulus data. It was found that a variable intrinsic 
modulus allowed an excellent fit of the data. As the 
temperature was lowered below the glass transition 
temperature, the modulus of the epoxy matrix in- 
creased and tended to approach the modulus of the 
glass sphere filler material. This decrease in the 
modulus ratio of filler to matrix resulted in a de- 
crease in the intrinsic modulus. 

The percent error in the fit of the Lewis and Niel- 
sen data significantly decreased when the intrinsic 
modulus was allowed to vary. Above the glass tran- 
sition temperature the difference between the vari- 
able and the constant intrinsic modulus was nearly 
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negligible. Below Tg a variable intrinsic modulus al- 
lowed a significant decrease in the error in fitting 
the data. 

It is not yet clear why the intrinsic modulus in- 
creased with a decrease in temperature below T 
= -40°C for the particle size range 75-90 pm and 
below -6OOC for the 10-20-pm particle size range. 
It also appears that there could be an as-yet unex- 
plainable minimum in the intrinsic modulus for each 
particle size range used in this study. If this mini- 
mum is real, it does appear to correlate with particle 
size. The location of this minimum could also be 
related to particle size distribution in some way not 
yet understood. Additional data are needed to answer 
these questions. 

While there was a significant improvement in the 
fit of the data when the intrinsic modulus was al- 
lowed to be a variable, there was not an obvious 
trend in the variation of the particle interaction 
coefficient with particle size for these data. However, 
when the intrinsic modulus remained a constant at 
[GI = 2.5, there was a definite trend in the particle 
interaction coefficient as a function of particle size. 
This latter result was consistent with that found in 
an earlier evaluationz3 for the variation of the par- 
ticle interaction coefficient with latex particle size 
for the viscosity of suspension blends. Of course, for 
liquid suspensions the intrinsic viscosity was ex- 
pected to be a constant at [ q ]  = 2.5. 

It was not clear from the Lewis and Nielsen data 
how to best represent the effect of particle size in 
particulate composites. It is hoped, however, that 
this problem can be remedied with more detailed 
information on the particle size distribution in future 
solid particulate composite studies. 
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